Shelf Sea Biogeochemistry blog

Thursday, 27 November 2014

Heading north

Ocean research cruise blog of Jonathan Sharples


Another successful day yesterday, with the wirewalker mooring and both of the gliders recovered very quickly. Jo Hopkins immediately removed all of the instruments from the wirewalker, and strapped them to the CTD ready for the next time we lowered it through the water. This allows Jo to calibrate the wirewalker data with the data collected by the CTD, with the CTD data all calibrated against analysis of samples we collect in the sample bottles. Every profile of data we collect through the water with the CTD involves samples being collected for salt concentration, dissolved oxygen and chlorophyll. These samples are analysed against known, internationally-recognised standards and lab techniques, so that we can calibrate the sensors on the CTD and estimate the error associated with their measurements. This is a vital part of any science: no other scientist would allow us to publish our results if we couldn’t demonstrate that our measurements achieved acceptable standards.

omg glider recovery

We can measure salt concentration to within about 2 thousandths of a gramme in 1 kg of seawater. We need to know salt to this level of accuracy because it has, along with temperature, a big influence on how dense the seawater is. The sea is always attempting to sort itself out so that less dense water floats above denser water, so knowing salt and temperature can tell us a lot about how the water will be moving. I’ve mentioned dissolved oxygen before in the context of Chata’s work – biology both produces oxygen (when the microbial plants are glowing) and consumes oxygen (when bacteria break down the organic matter), so accurate data on the oxygen in the water tells us a lot about how the biology is operating. Chlorophyll in the ocean is the same green stuff that you see in leaves and grass – the chemical that plants use to collect energy from sunlight. Chlorophyll is particularly good for plants that live in the ocean. Sunlight is absorbed very quickly as it passes downward from the sea surface. All of the red light from the sun is absorbed within the first 1 metre below the sea surface. Blue light travels the deepest in the sea, and chlorophyll is well suited to capturing energy from blue light. Clearly this is an advantage for the microbial plants in the sea, as they are mixed through the upper few 10s of metres and need to maximise their chances of collecting the sun’s energy. But why should land-based plants use chlorophyll when they don’t have the problem of metres of ocean absorbing the light? Photosynthesis first evolved in the ocean. Land-based plants haven’t bothered to evolve a form of photosynthesis more suited to life above the sea, instead they just highjacked the system that the ocean’s microbial plants had developed. Quite literally. At the heart of the photosynthesising biochemical machinery in every leaf lies a light-capturing system that can be genetically traced right back to photosynthesising marine bacteria.

Billy does the salts

We’ve started to head north through the Celtic Sea now, stopping every 25 km or so to lower the CTD through the water and collect more information. The wind has picked up, with about 25-30 knots now. The sea is looking rough, but it’ll take a few hours for the swell to pick up and start to move us about.

original post 

No comments :

Post a Comment